Soal-Soal Statistika kelas 12 Dan Pembahasannya Soal Statistika kelas 12 1. Modus dari data pada tabel berikut adalah β¦ a. 20,5 + ΒΎ .5 b. 20,5 + 3/25 .5 c. 20,5 + 3/7 .5 d. 20,5 β ΒΎ .5 e. 20,5 β 3/7 .5 Pembahasan Rumus modus untuk data kelompok adalah Dengan tb = tepi bawah d1 = selisih frekuensi kelas modus dengan kelas sebelumnya d2 = selisih frekuensi kelas modus dengan kelas sesudahnya c = panjang kelas Pada soal diketahui data Sehingga nilai modus dapat kita cari Mo = 20,5 + 3/ Jawaban C 2. Modus dari data pada tabel distribusi frekuensi berikut adalah β¦ a. 34,50 b. 35,50 c. 35,75 d. 36,25 e. 36,50 Pembahasan Rumus modus untuk data kelompok adalah Dengan tb = tepi bawah d1 = selisih frekuensi kelas modus dengan kelas sebelumnya d2 = selisih frekuensi kelas modus dengan kelas sesudahnya c = panjang kelas Pada soal diketahui data Sehingga nilai modus dapat kita cari Mo = 29,5 + 6/ Mo = 29,5 + 6 Mo = 35,5 Jawaban B 3. Simpangan baku dari data 2, 3, 4, 5, 6 adalah β¦ a. β15 b. β10 c. β5 d. β3 e. β2 Pembahasan Rumus untuk mencari simpangan baku adalah Dengan S = simpangan baku xi = data x Μ
= rata-rata data n= banyak data Sebelumnya kita cari dulu rata-ratanya x Μ
= 2+3+4+5+6/5 = 20/5 = 4 Simpangan bakunya S = = β2 Jawaban E 4. Frekuensi histogram di bawah ini menunjukkan nilai tes matematika sekelompok siswa SMA kelas XII-IPS. Rata-rata nilai raport tersebut adalah β¦ Pembahasan Kita ubah data dalam histogram di atas dalam bentuk tabel Rumus rata-rata dengan data kelompok adalah Jawaban D 5. Dalam suatu kelas terdapat siswa sebanyak 21 orang. Nilai rata-ratanya 6, jika siswa yang paling rendah nilainya tidak dikutsertakan, maka nilai rata-ratanya menjadi 6,2. Nilai yang terendah tersebut adalah β¦ a. 0 b. 1 c. 2 d. 3 e. 4 Pembahasan Nilai rata-rata 21 orang = 21 x 6 = 126 Nilai rata-rata 20 orang = 20 x 6,2 = 124 Nilai anak yang terendah = 126 β 124 = 2 Jawaban C 6. Simpangan baku dari data 7, 7, 6 , 11, 7, 5, 6, 7 adalahβ¦ a. Β½ β11 b. Β½ β13 c. Β½ β15 d. Β½ β17 e. Β½ β19 Pembahasan Rumus untuk mencari simpangan baku adalah Dengan S = simpangan baku xi = data x Μ
= rata-rata data n= banyak data Sebelumnya kita cari dulu rata-ratanya Simpangan bakunya S = Jawaban A 7. Diagram lingkaran di bawah ini menunjukkan hobi dari siswa kelas XII IPS SMA. Jika diketahui 60 siswa hobi menonton. Banyak siswa yang hobinya membaca adalah β¦ a. 60 siswa b. 120 siswa c. 180 siswa d. 200 siswa e. 220 siswa Pembahasan Siswa yang hobi membaca = 3600 β 700 + 1100 + 300 + 900 = 600 Banyak siswa yang hobi membaca = 60/30 x 60 = 120 siswa Jawaban B 8. Nilai rata-rata dari tabel di bawah ini adalah β¦ a. 61 b. 62 c. 63 d. 64 e. 65 Pembahasan Rumus rata-rata dengan data kelompok adalah Maka Sehingga rata-ratanya x Μ
= 2600/40 x Μ
= 65 Jawaban E 9. Rata-rata sekelompok bilangan adalah 40. Ada bilangan yang sebenarnya 60, tetapi terbaca 30. Setelah dihitung kembali ternyata rata-rata yang benar adalah 41. Banyak bilangan dalam kelompok itu adalah β¦ a. 20 b. 25 c. 30 d. 42 e. 45 Pembahasan Banyak bilangan = n Jumlah total bilangan = 40 x n = 40n Selisih kesalahan baca = 60 β 30 = 30 Jumlah nilai yang sebenarnya = 40n + 30 Rata-rata yang sebenarnya = 40n+30/n 41 = 40n+30/n 41n = 40n + 30 n = 30 jadi, banyaknya bilangan ada 30. Jawaban C 10. Banyak siswa kelas A adalah 30. Kelas B adalah 20 siswa. Nilai rata-rata ujian matematika kelas A lebih 10 dari kelas B. Jika rata-rata nilai ujian matematika gabungan dari kelas A dan kelas B adalah 66, maka rata-rata nilai ujian matematika kelas B adalah β¦ a. 58 b. 60 c. 62 d. 64 e. 66 Pembahasan Banyak siswa kelas A = nA = 30 Banyak siswa kelas B = nB = 20 Rata-rata kelas A = xA = 10 + xB Rata-rata kelas B = xB Xgab = 66 3300 = 30xB + 300 + 20xB 3000 = 50xB xB = 60 Jadi, rata-rata kelas B adalah 60 Jawaban B 11. Umur rata-rata dari suatu kelompok yang terdiri dari guru dan dosen adalah 42 tahun. Jika umur rata-rata para guru 39 tahun dan umur rata-rata para dosen 47 tahun, maka perbandingan banyaknya guru dan banyaknya dosen adalah β¦ a. 5 3 b. 5 4 c. 3 4 d. 3 5 e. 3 7 Pembahasan Banyak guru = x Banyak dosen = y Jumlah umur guru = 39x Jumlah umur dosen = 47x Rata-rata gabungan = 42 Jumlah umur gabungan = 42 x + y Maka Jumlah umur guru + dosen = jumlah umur gabungan 39x + 47x = 42x + y 39x + 47x = 42x + 42y 5y = 3x x/y = 5/3 jadi, perbandingan guru dosen = 5 3 Jawaban A 12. Dua kelompok anak masing-masing terdiri dari 4 anak, mempunyai rata-rata berat badan 30 kg dan 33 kg. Kalau seorang anak dari masing-masing kelompok ditukarkan maka ternyata rata-rata berat badan menjadi sama sama. Selisih berat badan yang ditukarkan adalah β¦ a. 1 1/2 b. 2 c. 4 d. 6 e. 8 Pembahasan Jumlah anak kelompok 1 = x Jumlah anak kelompok 2 = y n1 = n2 = 4 Rata-rata kelompok 1 = x1 = 30 Jumlah berat badan kelompok 1 = 30 x 4 = 120 Rata-rata kelompok 2 = x2 = 33 Jumlah berat badan kelompok 2 = 33 x 4 = 132 Rata-rata setelah ada pertukaran = 120 β x + y = 120 β y + x 2y β 2x = 132 β 120 2y β 2x = 12 y β x = 6 Jadi, selisih berat badan yang ditukar adalah 6 kg. Jawaban D 13. Sumbangan rata-rata dari 25 keluarga adalah Jika besar sumbangan seorang warga bernama Noyoβ digabungkan dengan kelompok tersebut maka sumbangan rata-rata dari 26 keluarga sekarang menjadi ini berarti bahwa sumbangan Noyoβ sebesar β¦ a. b. c. d. e. Pembahasan Jumlah sumbangan 25 keluarga = 25 x = Jumlah sumbangan 26 keluarga = 26 x = Besar sumbangan Noyo = β = Jawaban D 14. Dalam suatu ujian, perbandingan jumlah siswa pria dan wanita adalah 6 5. Diketahui 3 peserta pria dan 1 peserta wanita tidak lulus. Jika perbandingan jumlah peserta pria dan wanita yang lulus ujian adalah 9 8 maka jumlah peserta yang lulus adalah β¦ a. 26 b. 30 c. 51 d. 54 e. 55 Pembahasan Banyak peserta pria = x Banyak peserta wanita = y Pria wanita = 6 5 x/y = 6/5 5x = 6y y = 5x/6 β¦. i 3 pria dan 1 wanita tidak lulus, maka yang lulus = Pria = x β 3 Wanita = y β 1 Pria lulus wanita lulus = 9 8 8x β 24 = 9y β 9 8x β 9y = 15 β¦ ii Subtitusikan i dalam ii 8x β 9y = 15 8x β = 15 8x β 15x/2 = 15 kali 2 16x β 15x = 30 x = 30 y = 5x/6 = = 25 Jadi, banyak peserta yang lulus adalah = x β 3 + y β 1 = 30 β 3 + 25 β 1 = 27 + 24 = 51 Jawaban C 15. Dari nilai ulangan 12 siswa, diketahui nilai terkecil 20 dan nilai terbesar 80, nilai rata-rata ulangan siswa tersebut tidak mungkin sama dengan β¦ a. 22 b. 25 c. 36 d. 38 e. 32 Pembahasan β Jika 11 orang mendapat nilai 20 dan 1 orang mendapat nilai 80, maka rata-ratanya 11Γ20+1Γ80/12=220+80/12=300/12=25 β Jika 1 siswa mendapat nilai 20 dan 11 siswa mendapar nilai 80, maka rata-ratanya 1Γ20+11Γ80/12=20+880/12=900/12=75 Sehingga batas rata-ratanya adalah 25 β€ x β€ 75 Maka, rata-rata yang tidak mungkin adalah 22 Jawaban A 16. Suatu data dengan rata-rata 16 dan jangkauan 6. Jika setiap nilai dalam data dikalikan p kemudian dikurangi q didapat data baru dengan rata-rata 20 dan jangkauan 9. Nilai dari 2p + q = β¦ a. 3 b. 4 c. 7 d. 8 e. 9 Pembahasan Misal datanya x1, x2, x3, β¦, xn Rata-ratanya = Jangkauan = xn β x1 = 6 Jika setiap data dikali p lalu dikurangi q Rata-ratanya = = 16p β q = 20 β¦ i Jangkauan = β q β β q = 9 = xn β x1p = 9 = 6p = 9 = p = 9/6 β¦ii Subtitusikan ii dalam i β q = 20 24 β q = 20 q = 4 jadi, nilai 2p + q = + 4 = 3 + 4 = 7 Jawaban C 17. Diagram berikut menunjukkan persentase kelulusan siswa tiga sekolah selama empat tahun. Pernyataan berikut yang benar berdasarkan diagram di atas adalah β¦ a. Rata-rata persentase kelulusan sekolah golongan C terbaik b. Persentase kelulusan sekolah C selalu berada diposisi kedua c. Persentase kelulusan sekolah C selalu lebih baik dari sekolah A d. Persentase kelulusan sekolah B selalu lebih baik dari sekolah C e. Persentase kelulusan sekolah C selalu lebih baik dari pada tahun sebelumnya. Pembahasan Sebelumnya mari kita cari rata-rata masing-masing sekolah β Rata-rata sekolah A = 57 + 65 + 83 + 77 4 = 70,5 β Rata-rata sekolah B = 90 + 90 + 95 + 95 4 = 92,5 β Rata-rata sekolah C = 69 + 78 + 79 + 100 4 = 81,6 Selanjutnya kita bahas masing-masing opsi Opsi A salah, karena rata-rata terbaik adalah sekolah B Opsi B salah, karena pada tahun ke-4 persentase sekolah C adalah yang pertama Opsi C salah Opsi D salah, karena pada tahun ke-4 B di bawah C Opsi E benar Jawaban E 18. Dari 3 bilangan yang terkecil adalah 19 dan yang terbesar 75. Rata-rata hitung ketiga bilangan tersebut tidak mungkin sama dengan β¦ a. 49 b. 52 c. 53 d. 56 e. 59 Pembahasan Bilangan yang dimaksud 19, a, 75 β Rata-rata terkecil misalkan ketika a = 19 19 + 19 + 75 3 = 37,67 β Rata-rata terbesar misalkan ketika a = 75 19 + 75 + 75 3 = 56,33 Jadi batas nilai rata-ratanya adalah 37,67 β€ x β€ 56,33 Maka, rata-ratanya tidak mungkin 59 Jawaban E 19. Nilai rata-rata ulangan matematika dari kedua kelas adalah 5,38. Jika nilai rata-rata kelas pertama yang terdiri dari 38 siswa adalah 5,8 dan kelas kedua terdiri dari 42 siswa maka nilai rata-rata kelas kedua adalah β¦ a. 5 b. 5,12 c. 5,18 d. 5,21 e. 5,26 Pembahasan Rata-rata gabungan = xgab = 5,38 Rata-rata kelas pertama = xA = 5,8 Jumlah siswa A = nA = 38 Jumlah siswa B = nB = 42 Rata-rata gabungan dicari dengan rumus 5,38 . 80 = 220,4 + 42xB 430,4 = 220,4 + 42xB 430,4 β 220,4 = 42xB 210 = 42xB xB = 210/42 xB = 5 Jadi, rata-rata kelas kedua adalah 5 Jawaban A 20. Nilai rata-rata ulangan matematika dari 40 siswa SMA adalah 70. Jika seorang siswa yang nilainya 100 dan 3 orang siswa yang nilainya masing-masing 30 tidak dimasukkan dalam perhitungan maka nilai rata-ratanya menjadi β¦ a. 70,5 b. 72,5 c. 74,5 d. 75,5 e. 76,5 Pembahasan Total nilai seluruh siswa = 40 x 70 = Total nilai 36 siswa yang baru = β 100 + = β 190 = Jadi, rata-rata yang baru adalah = = 72,5 Jawaban B 21. Tahun yang lalu gaji perbulan 5 orang karyawan dalam ribuan rupiah sebagai berikut 480, 360, 650, 700, 260. Tahun ini gaji mereka naik 15% bagi yang sebelumnya bergaji kurang dari dan 10% bagi yang sebelumnya bergaji lebih dari Rata-rata besarnya kenaikan gaji mereka per bulan adalah β¦ a. b. c. d. e. Pembahasan Kenaikan gaji 15% untuk yang berpenghasilan β x 10/100 = β x 10/100 = Rata-rata besarnya kenaikan gaji adalah Jawaban A 22. Suatu data mempunyai rata-rata 35 dan jangkauan 7. Jika setiap nilai dalam data dikali p kemudian dikurangi q didapat data baru dengan rata-rata 42 dan jangkauan 9. Nilai 7p β q = β¦ a. 3 b. 4 c. 5 d. 6 e. 7 Pembahasan Misal datanya x1, x2, x3, β¦, xn Rata-ratanya Jangkauan = xn β x1 = 7 Jika setiap data dikali p lalu dikurangi q Rata-ratanya = = 35p β q = 42 β¦ i Jangkauan = β q β β q = 9 = xn β x1p = 9 = 7p = 9 = p = 9/7 β¦ii Subtitusikan ii dalam i β q = 42 45 β q = 42 q = 3 jadi, nilai 7p β q = β 3 = 9 β 3 = 6 Jawaban D 23. Diketahui data-data x1, x2, x3, β¦., x10. Jika setiap nilai ditambah 10, makaβ¦ 1 Rata-rata akan bertambah 10 2 Jangkauan bertambah 10 3 Median bertambah 10 4 Simpangan kuartil bertambah 10 Pembahasan β Rata-rata β Jangkauan R = x10 β x1 β Median β Simpangan Kuartil Qd = Β½ Q3 β Q1 = Β½ x8 β x3 Jumlah nilai tiap data ditambah 10, maka β Rata-rata β Jangkauan R = x10 + 10 β x1 + 10 = x10 β x1 β Median β Simpangan Kuartil Qd = Β½ Q3 β Q1 = Β½ x8+10 β x3+10 = Β½ x8 β x3 = Qd Mari kita bahas satu persatu opsinya Opsi 1 benar, rata-ratanya bertambah 10 Opsi 2 salah, jangkauannya tetap Opsi 3 benar, mediannya bertambah 10 Opsi 2 salah, simpangan kuartilnya tetap Jadi, pilihan 1 dan 3 yang benar 24. Sekumpulan data mempunyai rata-rata 12 dan jangkauan 6. Jika setiap data dikurangi dengan a kemudian hasilnya dibagi dengan b ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauan 3, maka nilai a dan b adalah β¦ a. 8 dan 2 b. 10 dan 2 c. 4 dan 4 d. 6 dan 4 e. 8 dan 4 Pembahasan Misal datanya x1, x2, x3, β¦, xn Rata-ratanya Jangkauan = xn β x1 = 6 Jika setiap data dikurangi a lalu dibagi b Subtitusikan ii dalam i 12-a/b = 2 12-a/2 = 2 12-a=4 a = 8 jadi, nilai a dan b adalah 8 dan 2 Jawaban A 25. Data berikut adalah data tinggi badan sekelompok siswa Jika median data di atas adalah 163,5 cm maka nilai k adalah β¦ a. 20 b. 22 c. 40 d. 46 e. 48 Pembahasan Perlu diketahui, bahwa rumus untuk mencari median Me adalah Dengan Me = median tb = tepi bawah kelas yang memuat median n = banyak data f = frekuensi kumulatif sebelum kelas median f = frekuensi kelas median c = panjang kelas Perhatikan tabel frekuensi kumulatif berikut ini data berdasakan soal di atas Maka, mediannya 6k = 40 + 5k k = 40 Jawaban C
UkuranPenyebaran Data adalah suatu ukuran baik parameter atau statistika untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.Melalui ukuran penyebaran dapat diketahui seberapa jauh data-data menyebar dari titik pemusatannya atau suatu kelompok data terhadap pusat.Ukuran ini kadang-kadang dinamakan pula ukuran variasi yang menggambarkan berpencarnya data kuantitatif.
1. 1. 1. Modus dari data pada tabel berikut adalah ... A. 20,5 + ΒΎ .5 B. 20,5 + 3/25 .5 C. 20,5 + 3/7 .5 D. 20,5 - ΒΎ .5 E. 20,5 - 3/7 .5 2. 2. Modus dari data pada tabel distribusi frekuensi berikut adalah ... A. 34,50 B. 35,50 C. 35,75 D. 36,25 E. 36,50 3. 3. Simpangan baku dari data 2, 3, 4, 5, 6 adalah ... A. β15 B. β10 C. β5 D. β3 E. β2 4. 4. Frekuensi histogram di bawah ini menunjukkan nilai tes matematika sekelompok siswa SMA kelas XII-IPS. Rata-rata nilai raport tersebut adalah ... A. A B. B C. C D. D E. E 5. 5. Dalam suatu kelas terdapat siswa sebanyak 21 orang. Nilai rata-ratanya 6, jika siswa yang paling rendah nilainya tidak dikutsertakan, maka nilai rata-ratanya menjadi 6,2. Nilai yang terendah tersebut adalah ... A. 0 B. 1 C. 2 D. 3 E. 4 6. 6. Simpangan baku dari data 7, 7, 6 , 11, 7, 5, 6, 7 adalah.. A. Β½ β11 B. Β½ β13 C. Β½ β15 D. Β½ β17 E. Β½ β19 7. 7. Diagram lingkaran di bawah ini menunjukkan hobi dari siswa kelas XII IPS SMA. Jika diketahui 60 siswa hobi menonton. Banyak siswa yang hobinya membaca adalah ... A. 60 B. 120 C. 180 D. 200 E. 220 8. 8. Nilai rata-rata dari tabel di bawah ini adalah ... A. 61 B. 62 C. 63 D. 64 E. 65 9. 9. Rata-rata sekelompok bilangan adalah 40. Ada bilangan yang sebenarnya 60, tetapi terbaca 30. Setelah dihitung kembali ternyata rata-rata yang benar adalah 41. Banyak bilangan dalam kelompok itu adalah ... A. 20 B. 25 C. 30 D. 42 E. 45 10. 10. Banyak siswa kelas A adalah 30. Kelas B adalah 20 siswa. Nilai rata-rata ujian matematika kelas A lebih 10 dari kelas B. Jika rata-rata nilai ujian matematika gabungan dari kelas A dan kelas B adalah 66, maka rata-rata nilai ujian matematika kelas B adalah ... A. 58 B. 60 C. 62 D. 64 E. 66 11. 11. Umur rata-rata dari suatu kelompok yang terdiri dari guru dan dosen adalah 42 tahun. Jika umur rata-rata para guru 39 tahun dan umur rata-rata para dosen 47 tahun, maka perbandingan banyaknya guru dan banyaknya dosen adalah ... A. 5 3 B. 5 4 C. 3 4 D. 3 5 E. 3 7 12. 12. Dua kelompok anak masing-masing terdiri dari 4 anak, mempunyai rata-rata berat badan 30 kg dan 33 kg. Kalau seorang anak dari masing-masing kelompok ditukarkan maka ternyata rata-rata berat badan menjadi sama sama. Selisih berat badan yang ditukarkan adalah ... A. 1 B. 2 C. 4 D. 6 E. 8 13. 13. Sumbangan rata-rata dari 25 keluarga adalah Jika besar sumbangan seorang warga bernama Noyoβ digabungkan dengan kelompok tersebut maka sumbangan rata-rata dari 26 keluarga sekarang menjadi ini berarti bahwa sumbangan Noyoβ sebesar ... A. Rp. B. Rp. C. Rp. D. Rp. E. Rp. 14. 14. Dalam suatu ujian, perbandingan jumlah siswa pria dan wanita adalah 6 5. Diketahui 3 peserta pria dan 1 peserta wanita tidak lulus. Jika perbandingan jumlah peserta pria dan wanita yang lulus ujian adalah 9 8 maka jumlah peserta yang lulus adalah ... A. 26 B. 30 C. 51 D. 54 E. 55 15. 15. Dari nilai ulangan 12 siswa, diketahui nilai terkecil 20 dan nilai terbesar 80, nilai rata-rata ulangan siswa tersebut tidak mungkin sama dengan ... A. 22 B. 25 C. 36 D. 38 E. 32 16. 16. Suatu data dengan rata-rata 16 dan jangkauan 6. Jika setiap nilai dalam data dikalikan p kemudian dikurangi q didapat data baru dengan rata-rata 20 dan jangkauan 9. Nilai dari 2p + q = ... A. 3 B. 4 C. 7 D. 8 E. 9 17. 17. Diagram berikut menunjukkan persentase kelulusan siswa tiga sekolah selama empat tahun. A. Rata-rata persentase kelulusan sekolah golongan C terbaik B. Persentase kelulusan sekolah C selalu berada diposisi kedua C. Persentase kelulusan sekolah C selalu lebih baik dari sekolah A D. Persentase kelulusan sekolah B selalu lebih baik dari sekolah C E. Persentase kelulusan sekolah C selalu lebih baik dari pada tahun sebelumnya. 18. 18. Dari 3 bilangan yang terkecil adalah 19 dan yang terbesar 75. Rata-rata hitung ketiga bilangan tersebut tidak mungkin sama dengan ... A. 49 B. 52 C. 53 D. 56 E. 59 19. 19. Nilai rata-rata ulangan matematika dari kedua kelas adalah 5,38. Jika nilai rata-rata kelas pertama yang terdiri dari 38 siswa adalah 5,8 dan kelas kedua terdiri dari 42 siswa maka nilai rata-rata kelas kedua adalah ... A. 5 B. 5,12 C. 5,18 D. 5,21 E. 5,26 20. 20. Nilai rata-rata ulangan matematika dari 40 siswa SMA adalah 70. Jika seorang siswa yang nilainya 100 dan 3 orang siswa yang nilainya masing-masing 30 tidak dimasukkan dalam perhitungan maka nilai rata-ratanya menjadi ... A. 70,5 B. 72,5 C. 74,5 D. 75,5 E. 76,5 21. 21. Tahun yang lalu gaji perbulan 5 orang karyawan dalam ribuan rupiah sebagai berikut 480, 360, 650, 700, 260. Tahun ini gaji mereka naik 15% bagi yang sebelumnya bergaji kurang dari dan 10% bagi yang sebelumnya bergaji lebih dari Rata-rata besarnya kenaikan gaji mereka per bulan adalah ... A. Rp. B. Rp. C. Rp. D. Rp. E. Rp. 22. 22. Suatu data mempunyai rata-rata 35 dan jangkauan 7. Jika setiap nilai dalam data dikali p kemudian dikurangi q didapat data baru dengan rata-rata 42 dan jangkauan 9. Nilai 7p β q = ... A. 3 B. 4 C. 5 D. 6 E. 7 23. 23. Diketahui data-data x1, x2, x3, ...., x10. Jika setiap nilai ditambah 10, maka... 1 Rata-rata akan bertambah 10 2 Jangkauan bertambah 10 3 Median bertambah 10 4 Simpangan kuartil bertambah 10 A. 1, 2, dan 3 B. 1 dan 3 C. 2 dan 4 D. 4 saja E. 1, 2, 3, dan 4 24. 24. Sekumpulan data mempunyai rata-rata 12 dan jangkauan 6. Jika setiap data dikurangi dengan a kemudian hasilnya dibagi dengan b ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauan 3, maka nilai a dan b adalah ... A. 8 dan 2 B. 10 dan 2 C. 4 dan 4 D. 6 dan 4 E. 8 dan 4 25. 25. 25. Data berikut adalah data tinggi badan sekelompok siswa Jika median data di atas adalah 163,5 cm maka nilai k adalah ... A. 20 B. 22 C. 40 D. 46 E. 48
Sekumpulandata kuantitatif yang dikelompokkan, dapatdinyatakanoleh x 1, x 2, , x n dan masing-masing data mempunyai frekuensi f 1, f 2, , f n. Simpanganbaku (S) dari data tersebut diperoleh dengan menggunakan rumus :
ο»ΏPertanyaanSekumpulan data dengan nilai rata-rata 12 dan jangkauan 6. Jika setiap nilai data dikurangi dengan a kemudian hasilnya dibagi dengan b, ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauannya 3, maka nilai a dan b masing-masing adalah β¦Sekumpulan data dengan nilai rata-rata 12 dan jangkauan 6. Jika setiap nilai data dikurangi dengan a kemudian hasilnya dibagi dengan b, ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauannya 3, maka nilai a dan b masing-masing adalah β¦8 dan 410 dan 24 dan 46 dan 48 dan 2HNMahasiswa/Alumni Universitas Negeri SurabayaPembahasanIngat bahwa pada statistika, data pemusatan mean, modus, dan median akan berubah jika dikalikan/ dibagi atau dikurang/ ditambah, maka β¦.1 Sedangkan untuk ukuran penyebaran simpangan, jangkauan, variansi data hanya akan berubah jika dikalikan β¦.2 Subtitusikan persamaan 2 ke persamaan 1 didapat a = 8Ingat bahwa pada statistika, data pemusatan mean, modus, dan median akan berubah jika dikalikan/ dibagi atau dikurang/ ditambah, maka β¦.1 Sedangkan untuk ukuran penyebaran simpangan, jangkauan, variansi data hanya akan berubah jika dikalikan β¦.2 Subtitusikan persamaan 2 ke persamaan 1 didapat a = 8 Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!94Yuk, beri rating untuk berterima kasih pada penjawab soal!
PertanyaanSekumpulan data dengan nilai rata-rata 12 dan jangkauan 6. Jika setiap nilai data dikurangi dengan a kemudian hasilnya dibagi dengan b, ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauannya 3, maka nilai a dan b masing-masing adalah...Sekumpulan data dengan nilai rata-rata 12 dan jangkauan 6. Jika setiap nilai data dikurangi dengan a kemudian hasilnya dibagi dengan b, ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauannya 3, maka nilai a dan b masing-masing adalah...8 dan 410 dan 24 dan 46 dan 48 dan 2Jawabannilai a dan b adalah 8 dan a dan b adalah 8 dan bahwa pada statistika, data pemusatan mean, modus, dan median akan berubah jika dikalikan/dibagi atau dikurang/ditambah, maka Sedangkan untuk ukuran penyebaran simpangan, jangkauan, variansi data hanya akan berubah jika dikalikan Substitusikan persamaan 2 ke persamaan 1 didapat a = 8 Jadi, nilai a dan b adalah 8 dan bahwa pada statistika, data pemusatan mean, modus, dan median akan berubah jika dikalikan/dibagi atau dikurang/ditambah, maka Sedangkan untuk ukuran penyebaran simpangan, jangkauan, variansi data hanya akan berubah jika dikalikan Substitusikan persamaan 2 ke persamaan 1 didapat a = 8 Jadi, nilai a dan b adalah 8 dan 2. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!13rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!ARAlhamd Ridho Putra Pembahasan tidak lengkapIMIRWAN MAHENDRA PUTRAPembahasan tidak lengkapX-XII - J - 27 - Stefanus Loveniko Putra SinoryPembahasan tidak lengkapJangkauanData dan Jangkauan Antarkuartil. Ukuran Letak. Ukuran Penyebaran Data. Data itu mempunyai nilai minimum 3 dan nilai maksimum 8. Jumlah kuartil bawah dan atas adalah 10. 3 5 8 7 4 12 6 5. Jumlah. 50. Nilai rata-rata dapat ditentukan dengan dua cara. Statistika. 69. Cara 1: Tabel 1.34 Nilai. fi. xi. fixi. xi x (xi x )2.
Mentok ngerjain soal? Foto aja pake aplikasi CoLearn. Anti ribet β Cobain, yuk!BimbelTanyaLatihan Kurikulum MerdekaNgajar di CoLearnPaket BelajarBimbelTanyaLatihan Kurikulum MerdekaNgajar di CoLearnPaket Kelas 12 SMAStatistika WajibJangkauanSekumpulan data mempunyai rata-rata 12 dan jangkauan 6. Jika setiap nilai data dikurangi dengan a, kemudian hasilnya dibagi dengan b, ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauan 3. Tentukan nilai a dan WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0143Berikut ini adalah data produksi harian dalam ribuan di...0319Perhatikan tabel berikut. Nilai Ujian 3 4 5 6 7 8 9 Freku...0811Berat badan sekelompok siswa tersaji pada tabel berikut. ...0225Kecepatan dari 31 mobil pada suatu jalan tertentu adalah ...Sukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul. 19 310 104 303 34 24 163 378